lunes, 10 de diciembre de 2012

UNIDAD V
TECNICAS DE DIAGNOSTICO MOLECULAR BIOLOGICO
 
5.1 TECNICAS BASADAS EN PCR Y/O ELECTROFORESIS

La hibridación de acidos nucleicos

 
La hibridación es la unión complementaria de ácidos nucléicos (ADN o ARN). Técnicas dehibridación se utilizan a menudo para detectar una molécula diana partiendo de una sondacomplementaria a ella, también se usan habitualmente en el diagnóstico de enfermedades, laidentificación de microorganismos patógenos, el estudio de perfiles de expresión génica, lalocalización de genes en cromosomas o de ARNm en tejidos (hibridación in situ) o en lacomparación de especies hibridando su ADN. Se parte de dos poblaciones de ácidos nucléicos: un conjunto homogéneo de ácidos nucléicos desecuencia conocida que actúa como sonda y otro conjunto heterogéneo de ácidos nucléicos desecuencia desconocida donde queremos detectar la secuencia diana. Una de ellas debe estarmarcada. Si lo está la sonda, la hibridación es estándar. Si lo está la diana, la hibridación esreversa. Los ácidos nucléicos de partida son de cadena sencilla, bien procedentes de ADN clonadoy fragmentado por enzimas de restricción, bien oligonucleótidos sintéticos. Durante la hibridaciónse produce la unión de las moléculas diana con las moléculas sonda. Esta unión depende de lacomplementariedad de bases. Así, aumentando la fuerza iónica (por ejemplo, la concentración decloruro sódico NaCl) o disminuyendo la temperatura se permite la hibridación aunque existanalgunas bases no complementarias.


 
 
TECNICAS DE HIBRIDACION


Hibridación in situ con filtro (HISF).



La Hibridación in situ sobre filtros (FISH) es más rápida que el Dot - Blot ya que no se realiza la extracción de DNA. Es poco específica, pero es útil para estudiar con gran número de muestras. La Hibridación in situ es una técnica relativamente rápida y accesible a los laboratorios de diagnóstico si se utilizan sondas no radiactivas. En este caso, se obtiene una coloración específica en los núcleos positivos, fácilmente observable en un microscopio óptico de rutina.

Esta técnica permite trabajar con pequeños fragmentos de tejidos. Si bien no distingue subtipos ni permite caracterizar nuevos tipos virales, es el único método que hace posible observar en forma conjunta la arquitectura del tejido y la presencia y distribución del DNA viral. Es también de gran utilidad en diagnósticos retrospectivos de muestras histológicas de archivo (27)
 
 
 
 
 
 
5.1.1 SOUTHERN
 
Southern blot, hibridación Southern o, simplemente, Southern es un método de biología molecular que permite detectar la presencia de una secuencia de ADN en una mezcla compleja de este ácido nucleico. Para ello, emplea la técnica de electroforesis en gel de agarosa con el fin de separar los fragmentos de ADN de acuerdo a su longitud y, después, una transferencia a una membrana en la cual se efectúa la hibridación de la sonda.[1] Su nombre procede del apellido de su inventor, un biólogo inglés llamado Edwin Southern.[2
 






Pasos de Southern blot


1. Extracción del ADN
Se puede extraer ADN de casi cualquier tejido humano. Las posibles fuentes de ADN en la escena de un delito incluyen sangre, semen, tejido de una víctima muerta, células del folículo capilar y saliva. El ADN extraído de las pruebas del delito ("indicios" o "vestigios" biológicos) se compara con el extraído de muestras de referencia, obtenidas de personas conocidas,habitualmente de la sangre.
 
2. Digestión del ADN con una endonucleasa de restricción
El ADN extraído de la muestra se trata con una endonucleasa de restricción,que es una enzima que corta el ADN bicatenario en donde tenga una secuencia característica. La enzima que se usa más frecuentemente para el análisis legal es HaeIII, que corta el ADN en la secuencia 5'-GGCC-3'.
 
3. Electroforesis en gel de agarosa
Tras la digestión del ADN, los fragmentos de ADN resultantes se separan según su tamaño mediante electroforesis en geles de agarosa. Durante la electroforesis, las moléculas de ADN, que poseen carga negativa, migran hacia el electrodo positivo. Al avanzar las moléculas de ADN, su velocidad de migración se ve reducida por la matriz del gel de agarosa. Las moléculas menores se mueven más deprisa a través de los poros del gel que las de mayor tamaño. Como resultado, se produce una separación continua de los fragmentos de ADN de acuerdo con su tamaño, de modo que los fragmentos más pequeños avanzan la mayor distancia con referencia al origen o punto de aplicaión de la muestra.
 
4. Preparación de un ensayo de Southern ("Southern blot")
Tras la electroforesis, las moléculas de ADN separadas se desnaturalizan mientras permanecen en el gel de agarosa, impregnando éste con una disolución alcalina. Tras la neutralización de ésta, el DNA monocatenario resultante se transfiere a la superficie de una membrana de nailon,realizando así una copia o "calco" (la traducción más literal del inglés blot,conservando este sentido, es "secante"). Este proceso de desnaturalización y transferencia se conoce como método de Southern en recuerdo de quien lo inventó, Edward Southern. Al igual que la aplicación de un secante a un papel con la tinta húmeda transfiere una réplica de la imagen del papel al secante,el "calco" del ADN en el gel a la membrana de nailon conserva la distribución espacial de los fragmentos de ADN conseguida en el gel como resultado de la electroforesis.
 
5. Hibridación con sonda radioactiva
Una sonda de locus único es una molécula pequeña de ADN o ARN capaz de hibridar (es decir, de formar un dúplex ADN-ADN o ADN-ARN) con el ADN de un fragmento de restricción concreto en el ensayo de Southern. La formación de la molécula dicatenaria (dúplex) depende del emparejamiento de bases complementarias entre las secuencias de la sonda y del ADN presente en el"calco". Las sondas de locus único se marcan habitualmente con un isótopo radiactivo para facilitar su detección, y se eligen para que detecten un locus genético polimórfico en un solo cromosoma humano. El ensayo de Southern resultante de la etapa 4 se incuba en una disolución que contiene una sonda radiactiva de locus único, bajo condiciones de temperatura y concentración desales que favorezcan la hibridación. Tras producirse ésta, se lava el exceso de sonda no unido, de modo que la única radiactividad que quede en la membrana de nailon sea la asociada al ADN del locus diana.
 
6. Detección de los RFLPs mediante autorradiografía
Las posiciones de hibridación de la sonda radiactiva sobre la membrana del ensayo de Southern se detectan mediante autorradiografía. En esta técnica,la membrana de nailon se coloca, una vez lavada, junto a una película derayos X dentro de una caja que las aísle de la luz. La película registra las posiciones donde hay desintegración radiactiva. Tras su exposición y el revelado fotográfico, el registro resultante de la hibridación de Southern se conoce como autorradiografía
 
7. Reensayar el resultado del Southern con sondas adicionales
En un análisis legal de DNA se suelen caracterizar polimorfismos de ADN en varios cromosomas diferentes. Tras el revelado de una autorradiografía para la primera sonda, se puede lavar la radiactividad con una disolución a elevada temperatura, que deja el ADN en su sitio, e hibridarlo con una segunda sonda radiactiva que se una a un locus diferente. Se repiten así las etapas 5-7,detectando cada vez un locus diferente. El grupo de autorradiografías de una misma transferencia de Southern se conoce como un "perfil de ADN"


5.1.2 NORTHERN

Northern blot es una técnica de detección de moléculas de ácido ribonucleico (ARN) de una secuencia dada dentro de una mezcla compleja (por ejemplo, un ARN mensajero para un péptido dado en una extracción de ARN total). Para ello, se toma la mezcla de ARN y se somete a una electroforesis en gel a fin de separar los fragmentos en base a su tamaño. Tras esto, se transfiere el contenido del gel, ya resuelto, a una membrana cargada positivamente en la cual se efectúa la hibridación de una sonda molecular marcada radiactiva o químicamente.[1]
El nombre de la técnica deriva de la propia de la detección de ácido desoxirribonucleico (ADN), denominada Southern blot en honor a su descubridor; de este modo, al desarrollarse la técnica equivalente para ARN se empleó el punto cardinal opuesto («northern», septentrional en inglés, frente al meridional «southern»). El northern blot fue desarrollado en 1977 por James Alwine, David Kemp y George Stark en la Universidad de Stanford.
 
 
El procedimiento general comienza con la extracción del RNA total de una muestra de tejido homogenizado. El mRNA se puede aislar a través del uso de cromatografía para mantener solamente los ARN con colas de poli-A. Las muestras de ARN son entonces separadas por electroforesis en gel. Dada la fragilidad de los geles y la incapacidad de las sondas para penetrar en la matriz, las muestras de RNA, separadas por tamaño tras la electroforesis, serán tranferidas a una membrana de Nailon por medio de capilaridad o un sistema de transferencia al vacío.
Los sistemas de capilaridad iónica se utilizan pra transferir el ARN desde un gel de electroforesis a una membrana de Northern blot.
Una membrana de Nylon cargada positivamente es el soporte mas efectivo para usar en el northern blot ya que los ácidos nucleicos, que están cargados negativamente, tienen una alta afinidad por estas membranas. El buffer de transferencia usado para el ensayo suele contener formamida, dado que ésta consigue disminuir la temperatura de hibridación de la sonda, lo cual previene la degradación del ARN por las altas temperaturas. Una vez que el ARN ha sido transferido a la membrana, este es inmovilizado a través de enlaces covalentes formados con la membrana, lo cual se consigue por medio de luz ultravioleta o calor. Después del marcaje de la sonda, ésta se hibrida con el RNA en la membrana. Las condiciones experimentales que pueden afectar la eficiencia y especificidad de la hibridación están determinadas por las condiciones iónicas, de viscosidad, la presencia de dobles hebras de RNA, bases desemparejadas y composición de las mismas. Finalmente, la membrana debe de lavarse para asegurar que la sonda se ha unido de forma específica y para evitar ruido de fondo en las señales emitidas por la misma. Estas señales serán detectadas porRayos X y pueden ser cuantificadas mediante técnicas de densitometría. Para crear controles y poder asegurarnos de que no se están mostrando genes que no nos interesen se puede realizar posteriormente la determinación por microarrays o RT-PCR.

 Geles

El RNA puede correr en un gel de agarosa para mostrar las subunidades ribosomales 28s (banda superior) y 16s (banda inferior).
Las muestras de RNA son normalmente separadas en geles de agarosa que contienen formaldehído como agente desnaturalizante del RNA para obtener su estructura secundaria. Los geles pueden ser teñidos con bromuro de etidio y visualizados bajo luz ultravioleta para observar el RNA. Los geles de poliacrilamida con urea también pueden utilizarse, aunque esto suele limitarse a fragmentos de RNA o miRNA, ya que crean un tamaño de poro mas estrecho en su matriz, por lo que el RNA que suele utilizarse no podría desplazarse por el gel. Suele utilizarse además un patrón de RNA con muestras de tamaño conocido para poder extrapolar el tamaño de las muestras en estudio.

Sondas

Las sondas del northern blot están compuestas por ácidos nucleicos con una secuencia complementaria a todo o parte del RNA que nos interesa. Pueden ser de DNA, RNA o oligonucleótidos, con un mínimo de 25 bases complementarias para nuestra secuencia diana. Las sondas de RNA o ribosondas que se transcriben in vitro ayudan a prevenir el ruido de fondo. Normalmente, el DNA complementario se sintetiza con cebadores para la secuencia RNA de interés para actuar como sonda en el Northern blot. Las sondas requieren ser marcadas bien con isótopos radiactivos (32P) o con quimioluminiscencia, ya sea con fosfatasa alcalina o con peroxidasa de rábano, las cuáles, tras la adición de su sustrato específico producen una emisión de luz detectable. El marcaje por quimioluminiscencia puede hacerse de dos formas: Por un lado, la sonda puede estar unida a la enzima o bien unida a un ligando (p.ej, biotina) para la cual hay un anticuerpo (avidina o estreptavidina en este caso) está unido a la enzima que revelará el marcaje. Los Rayos X pueden detectar tanto las señales radioactivas como las quimioluminiscentes, siendo preferida por muchos investigadores la segunda, dada su mayor rapidez, sensibilidad y reducción de los riesgos para la salud que conlleva trabajar con compuestos radioactivos.

 Aplicaciones

El northern Blot permite observar un patrón particular de expresión genética entre tejidos, órganos, estadios del desarrollo, niveles de estrés ambiental, infecciones causadas por patógenos y durante el curso del tratamiento de las mismas. Esta técnica se ha utilizado para mostrar la sobreexpresión de oncogenes y la desregulación de genes supresores tumorales en células cancerosas cuando son comparadas con tejidos normales.
Los patrones de expresión obtenidos nos ayudan a conocer las funciones de los genes. Desde que el RNA se separó por su tamaño, las sondas contra el mismo pueden darnos una idea de su tamaño, sugerir ayuste alternativo, o motivos repetidos en la secuencia. La variación en el tamaño del producto de un gen puede además indicarnos deleciones o errores en el proceso de transcripción. Alterando la sonda podemos conocer la secuencia e incluso determinar que región del RNA ha sido delecionada.

 Ventajas y Desventajas

El análisis de la expresión génica puede realizarse por diversos métodos, como RT-PCR, Ensaños de protección de RNasa, microarrays, Análisis seriado de expresión génica así como el Northern Blot. Los microarrays son los mas utilizados y son generalmente consistentes con los datos obtenidos por el Northern Blot. No obstante, en ocasiones el Northern Blot es capaz de detectar pequeños cambios en la expresión de genes que los microarrays no pueden identificar.
Ventajas adicionales de usar el método de Northern Blot incluyen la habilidad de definir el tamaño de la cadena de ARN, la habilidad de observar los productos del empalme alternativo, la posibilidad de usar sondas con homología parcial, la habilidad de medir el tamaño y la calidad del ARN antes de realizar la inmovilización en la membrana y finalmente la opción de guardar la membrana para ser analizada en repetidas ocasiones en el futuro.[2]
Un problema común del northern blot es que la degradación de la muestra por RNAsas (endógenas de la muestra o a través de contaminación ambiental) que puede ser evitada por una apropiada esterilización de los materiales así como el uso de inhibidores de RNAsas como el dietilpirocarbonato
El procedimiento general comienza con la extracción del RNA total de una muestra de tejido homogenizado. El mRNA se puede aislar a través del uso de cromatografía para mantener solamente los ARN con colas de poli-A. Las muestras de ARN son entonces separadas por electroforesis en gel. Dada la fragilidad de los geles y la incapacidad de las sondas para penetrar en la matriz, las muestras de RNA, separadas por tamaño tras la electroforesis, serán tranferidas a una membrana de Nailon por medio de capilaridad o un sistema de transferencia al vacío.
Los sistemas de capilaridad iónica se utilizan pra transferir el ARN desde un gel de electroforesis a una membrana de Northern blot.
Una membrana de Nylon cargada positivamente es el soporte mas efectivo para usar en el northern blot ya que los ácidos nucleicos, que están cargados negativamente, tienen una alta afinidad por estas membranas. El buffer de transferencia usado para el ensayo suele contener formamida, dado que ésta consigue disminuir la temperatura de hibridación de la sonda, lo cual previene la degradación del ARN por las altas temperaturas. Una vez que el ARN ha sido transferido a la membrana, este es inmovilizado a través de enlaces covalentes formados con la membrana, lo cual se consigue por medio de luz ultravioleta o calor. Después del marcaje de la sonda, ésta se hibrida con el RNA en la membrana. Las condiciones experimentales que pueden afectar la eficiencia y especificidad de la hibridación están determinadas por las condiciones iónicas, de viscosidad, la presencia de dobles hebras de RNA, bases desemparejadas y composición de las mismas. Finalmente, la membrana debe de lavarse para asegurar que la sonda se ha unido de forma específica y para evitar ruido de fondo en las señales emitidas por la misma. Estas señales serán detectadas porRayos X y pueden ser cuantificadas mediante técnicas de densitometría. Para crear controles y poder asegurarnos de que no se están mostrando genes que no nos interesen se puede realizar posteriormente la determinación por microarrays o RT-PCR.

 Geles

El RNA puede correr en un gel de agarosa para mostrar las subunidades ribosomales 28s (banda superior) y 16s (banda inferior).
Las muestras de RNA son normalmente separadas en geles de agarosa que contienen formaldehído como agente desnaturalizante del RNA para obtener su estructura secundaria. Los geles pueden ser teñidos con bromuro de etidio y visualizados bajo luz ultravioleta para observar el RNA. Los geles de poliacrilamida con urea también pueden utilizarse, aunque esto suele limitarse a fragmentos de RNA o miRNA, ya que crean un tamaño de poro mas estrecho en su matriz, por lo que el RNA que suele utilizarse no podría desplazarse por el gel. Suele utilizarse además un patrón de RNA con muestras de tamaño conocido para poder extrapolar el tamaño de las muestras en estudio.

Sondas

Las sondas del northern blot están compuestas por ácidos nucleicos con una secuencia complementaria a todo o parte del RNA que nos interesa. Pueden ser de DNA, RNA o oligonucleótidos, con un mínimo de 25 bases complementarias para nuestra secuencia diana. Las sondas de RNA o ribosondas que se transcriben in vitro ayudan a prevenir el ruido de fondo. Normalmente, el DNA complementario se sintetiza con cebadores para la secuencia RNA de interés para actuar como sonda en el Northern blot. Las sondas requieren ser marcadas bien con isótopos radiactivos (32P) o con quimioluminiscencia, ya sea con fosfatasa alcalina o con peroxidasa de rábano, las cuáles, tras la adición de su sustrato específico producen una emisión de luz detectable. El marcaje por quimioluminiscencia puede hacerse de dos formas: Por un lado, la sonda puede estar unida a la enzima o bien unida a un ligando (p.ej, biotina) para la cual hay un anticuerpo (avidina o estreptavidina en este caso) está unido a la enzima que revelará el marcaje. Los Rayos X pueden detectar tanto las señales radioactivas como las quimioluminiscentes, siendo preferida por muchos investigadores la segunda, dada su mayor rapidez, sensibilidad y reducción de los riesgos para la salud que conlleva trabajar con compuestos radioactivos.

 Aplicaciones

El northern Blot permite observar un patrón particular de expresión genética entre tejidos, órganos, estadios del desarrollo, niveles de estrés ambiental, infecciones causadas por patógenos y durante el curso del tratamiento de las mismas. Esta técnica se ha utilizado para mostrar la sobreexpresión de oncogenes y la desregulación de genes supresores tumorales en células cancerosas cuando son comparadas con tejidos normales.
Los patrones de expresión obtenidos nos ayudan a conocer las funciones de los genes. Desde que el RNA se separó por su tamaño, las sondas contra el mismo pueden darnos una idea de su tamaño, sugerir ayuste alternativo, o motivos repetidos en la secuencia. La variación en el tamaño del producto de un gen puede además indicarnos deleciones o errores en el proceso de transcripción. Alterando la sonda podemos conocer la secuencia e incluso determinar que región del RNA ha sido delecionada.

 Ventajas y Desventajas

El análisis de la expresión génica puede realizarse por diversos métodos, como RT-PCR, Ensaños de protección de RNasa, microarrays, Análisis seriado de expresión génica así como el Northern Blot. Los microarrays son los mas utilizados y son generalmente consistentes con los datos obtenidos por el Northern Blot. No obstante, en ocasiones el Northern Blot es capaz de detectar pequeños cambios en la expresión de genes que los microarrays no pueden identificar.
Ventajas adicionales de usar el método de Northern Blot incluyen la habilidad de definir el tamaño de la cadena de ARN, la habilidad de observar los productos del empalme alternativo, la posibilidad de usar sondas con homología parcial, la habilidad de medir el tamaño y la calidad del ARN antes de realizar la inmovilización en la membrana y finalmente la opción de guardar la membrana para ser analizada en repetidas ocasiones en el futuro.[2]
Un problema común del northern blot es que la degradación de la muestra por RNAsas (endógenas de la muestra o a través de contaminación ambiental) que puede ser evitada por una apropiada esterilización de los materiales así como el uso de inhibidores de RNAsas como el dietilpirocarbonato

 Northern

Una versión alternativa del método es conocidad como Northern Blot reverso. En ésta, el ácido nucleico que actua como sustrato (fijo en la membrana) está conformado por fragmentos aislados de ADN, mientras que la sonda está conformada por ARN obtenido de los tejidos y etiquetada con material radioactivo.
Esta variante es más compatible con el uso de un chip de ADN, que se ha convertido en practica común en la parte final de la década de 1990 y la primera del siglo XXI. Ambas prácticas requieren la fijación de fragmentos de ADN como su hibridación con sondas de ARN celular. De esta manera el proceso en reverso, aunque inicialmente era poco común, permitió que el Northern Blot evolucionara hasta tener un lugar en el desarrollo de los perfiles de expresión génica.Northern Blot reverso



Una versión alternativa del método es conocidad como Northern Blot reverso. En ésta, el ácido nucleico que actua como sustrato (fijo en la membrana) está conformado por fragmentos aislados de ADN, mientras que la sonda está conformada por ARN obtenido de los tejidos y etiquetada con material radioactivo.
Esta variante es más compatible con el uso de un chip de ADN, que se ha convertido en practica común en la parte final de la década de 1990 y la primera del siglo XXI. Ambas prácticas requieren la fijación de fragmentos de ADN como su hibridación con sondas de ARN celular. De esta manera el proceso en reverso, aunque inicialmente era poco común, permitió que el Northern Blot evolucionara hasta tener un lugar en el desarrollo de los perfiles de expresión génica.


5.1.3 MARCADORES MOLECULARES

Un marcador genético o marcador molecular es un segmento de ADN con una ubicación física identificable (locus) en un cromosoma y cuya herencia genética se puede rastrear. Un marcador puede ser un gen, o puede ser alguna sección del ADN sin función conocida. Dado que los segmentos del ADN que se encuentran contiguos en un cromosoma tienden a heredarse juntos, los marcadores se utilizan a menudo como formas indirectas de rastrear el patrón hereditario de un gen que todavía no ha sido identificado, pero cuya ubicación aproximada se conoce. Los marcadores se usan para el mapeo genético como el primer paso para encontrar la posición e identidad de un gen.
Son ampliamente utilizados en genética humana, vegetal, animal y microbiana. Permiten evidenciar variaciones (polimorfismos) en la secuencia del ADN entre dos individuos, modifiquen éstas o no su fenotipo. Funcionan como señaladores de diferentes regiones del genoma.
 
 
5.1.3.1. AFLP
 
El ensayo de AFLP consiste esencialmente en cuatro etapas:
 
En la primera de ellas el ADN genómico se corta o digiere con dos enzimas de restricción. Generalmente una de ellas es de corte raro (ej. EcoRI), que reconoce de 6 a 8 pares de bases y otra es de corte frecuente (ej. MseI) que reconoce 4 pares de bases.
 
 En una segunda etapa, los fragmentos de ADN doble cadena de 20 a 30 pares de bases llamados adaptadores se ligan en forma específica a los extremos de los fragmentos obtenidos en el paso anterior, generando así el molde para la amplificación posterior del ADN.
 
 En una tercera etapa se amplifican selectivamente fragmentos por PCR. En esta etapa, se utilizan iniciadores de aproximadamente 20 nucleótidos que contienen una secuencia específica complementaria a la secuencia de los adaptadores y además, de uno a tres nucleótidos selectivos adicionales de secuencia arbitraria en su extremo 3´. Dado que sólo una subpoblación de los fragmentos originales es amplificada, se obtiene un patrón de bandas que permite un registro adecuado. La amplificación descripta en la tercera etapa se realiza en dos pasos: una primera amplificación selectiva empleando un nucleótido arbitrario (amplificación +1 o preamplificación) y luego, este producto de amplificación obtenido es empleado como molde en una nueva amplificación empleando iniciadores que poseen dos nucleótidos selectivos adicionales al anterior (amplificación +3 o amplificación final).
 
 La cuarta y última etapa del ensayo AFLP involucra el análisis de los fragmentos amplificados, la cual se realiza mediante electroforesis en geles de poliacrilamida desnaturalizantes. Si uno de los iniciadores empleados está marcado radiactivamente, se visualizará mediante autorradiografía, si uno de los iniciadores está marcado con un compuesto fluorescente, puede ser resuelto empleando un secuenciador automático. Alternativamente, se puede visualizar mediante tinción con nitrato de plata.
 
 
5.1.3.2. RAPD
 

Amplificación aleatoria de ADN polimórfiCO

RAPD experiment
La amplificación aleatoria de ADN polimórfico, más conocida por el acrónimo inglés RAPDs (Random Amplification of Polymorphic DNA), es un tipo de marcador molecular basado en la reacción en cadena de la polimerasa. Los fragmentos de ADN obtenidos por medio de esta técnica se amplifican en regiones aleatorias del genoma ya que los iniciadores o cebadores de la reacción son secuencias arbitrarias de ADN sintético. Es una de las técnicas más versátiles desde que se desarrolló en el año 1990.[1] Es muy cómoda, rápida, requiere poco ADN que además no necesita estar muy puro, no presupone conocimientos previos sobre la secuencia, y se pueden distinguir rápida y simultáneamente muchos organismos. Sus inconvenientes son que los fragmentos amplificados no suelen corresponder a ADN ligado a algún carácter, sino redundante, y que no da información sobre el número de copias que el ADN genómico contiene de la secuencia amplificada. Esta tecnología ha sido utilizada para análisis de diversidad genética,[2] mejoramiento genético,[3] y diferenciación de líneas clonales.[4]

 Método

Esta técnica se basa en la utilización de un único oligonucleótido de 10bp que hibrida al azar con el ADN en estudio. Para que se genere un fragmento RAPD es necesario que las dos hebras del ADN en estudio presenten sitios de hibridación con el oligonucleótido en orientaciones opuestas suficientemente cercanas (menos de 3000bp) como para permitir la amplificación. La secuencia del oligonucleótido es aleatoria al igual que los sitios de hibridación, por lo que la secuencia amplificada es desconocida. El polimorfismo que se observa entre distintos individuos consiste en la presencia o ausencia de fragmentos de ADN amplificado.
 
5.1.3.3 MICROSATELITES

Microsatélites

(Redirigido desde «Microsatélites»)

SSR (Simple Sequence Repeat) o STR (Short Tandem Repeat) por sus siglas en inglés, denominados microsatélites en castellano, son secuencias de ADN en las que un fragmento (cuyo tamaño va desde dos hasta seis pares de bases) se repite de manera consecutiva. La variación en el número de repeticiones crea diferentes alelos.

Generalmente se encuentran en zonas no codificantes del DNA. Son neutros, co-dominantes y poseen una alta tasa de mutación, lo que los hace muy polimórficos. A pesar de esto, la variabilidad que presentan útil para su uso como marcadores moleculares, es respecto al número de repeticiones, no de la secuencia repetida. Son utilizados como marcadores moleculares en una gran variedad de aplicaciones en el campo de la genética como parentescos y estudios de poblaciones.
 
 
 
 
 
 
 
 
 
 

No hay comentarios:

Publicar un comentario